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Abstract

One of the more distinctive features of Bob Hale and Crispin Wright’s neologicism
about arithmetic is their invocation of Frege’s Constraint – roughly, the requirement
that the core empirical applications for a class of numbers be “built directly into”
their formal characterization. In particular, they maintain that, if adopted, Frege’s
Constraint adjudicates in favor of their preferred foundation – Hume’s Principle –
and against alternatives, such as the Dedekind-Peano axioms. In what follows
we establish two main claims. First, we show that, if sound, Hale and Wright’s
arguments for Frege’s Constraint at most establish a version on which the relevant
application of the naturals is transitive counting – roughly, the counting procedure
by which numerals are used to answer “how many”-questions. Second, we show that
this version of Frege’s Constraint fails to adjudicate in favor of Hume’s Principle.
If this is the version of Frege’s Constraint that a foundation for arithmetic must
respect, then Hume’s Principle no more – and no less – meets the requirement than
the Dedekind-Peano axioms do.

Introduction

There are different formal characterizations of the natural numbers available: the
Dedekind-Peano Axioms, Hume’s Principle, and Øystein Linnebo’s [2009] abstrac-
tion principle (“2L-N0”), to name a few. One egalitarian attitude towards this pro-
liferation is that they are simply different, equally legitimate ways of codifying the
same things, the natural numbers. Many forms of structuralism in the philosophy of
mathematics exhibit such an attitude. Roughly put, so long as a formal characteri-
zation specifies the relevant structure – an ω-sequence – it succeeds in this task. And
since there are many ways of specifying an ω-sequence, there are many equally good
ways of characterizing the natural numbers. None is in any non-prudential sense
better than another. Moreover, none is in any interesting sense more fundamental
than any other.
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There is another, non-egalitarian, attitude towards such matters. Even if there are
many correct formal characterizations of the naturals, one is more fundamental than
the others in that it provides the correct foundations for (basic) arithmetic. Though
there are different versions of this approach, the abstraction-based neologicism of
Crispin Wright and Bob Hale is surely the most prominent and influential.

Central to Hale and Wright’s neologicism is the claim that Hume’s Principle
(HP) – not the Dedekind-Peano (DP) axioms, or any other formal characterization –
constitutes the correct foundations for arithmetic. A centerpiece of their argument
for this claim is a requirement known as Frege’s (Application) Constraint – roughly,
the thesis that a satisfactory foundation for a mathematical theory – in the present
case, basic arithmetic – must somehow “build in” its primary empirical applications.
Hale and Wright have sought to justify the adoption of Frege’s Constraint for basic
arithmetic, and to argue that this constraint, appropriately formulated, adjudicates
in favor of assigning a foundational status to HP.

We argue that Hale and Wright’s approach fails. In particular, their arguments
fail to justify a version of Frege’s Constraint that adjudicates in favor of HP, since
either the DP Axioms equally well meet the version of Frege’s Constraint for which
they argue, or else neither characterization does.

The paper is organized as follows. §1 outlines some of the core background to the
present issue. We sketch the theoretical context in which Hale and Wright develop
their neologicism, and remind the reader of the main formal machinery on which
they rely. We also explain how their view is beholden to capturing accurately our or-
dinary concepts of natural numbers, via what we call “the Frege-Heck Condition”,
and how this condition underlies the adoption of Frege’s Constraint. §2 sketches
what we take to be the two most plausible extant arguments for Frege’s Constraint,
due to Wright [2000] and Hale [2016]. Although we offer some critical remarks,
our main aim is to highlight the fact that both arguments, if sound, would deliver
a version of Frege’s Constraint on which transitive counting is the core empirical
application relevant to satisfying Frege’s Constraint. Finally, in §3, we show that
if this is the version of Frege’s Constraint that we should endorse, then it fails to
adjudicate in favor of adopting HP as fundamental. When it comes to meeting
Frege’s Constraint, HP fairs no better or worse than the DP axioms.

1. Current Philosophy of Mathematics and Neologicism

1.1 The Philosophy of What Mathematics?
Much contemporary work in the philosophy of mathematics focuses on what is
practiced by professional mathematicians, or at least the mathematics taught in
graduate and advanced undergraduate courses. Philosophers address ontological,
epistemological, and methodological issues concerning branches like number the-
ory, real analysis, complex analysis, functional analysis, and the like. Much, but not
all, of this work concerns so-called foundational branches of mathematics, such as
set theory, category theory, and type theory.

Contemporary philosophers are also keenly interested in the applications of
mathematics. Typically, this concerns the use of mathematics in science, such as its
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role in expressing scientific laws and the place of differential equations in physics.
There is less concern, overall, with the role and place of elementary mathematics
in everyday life, such as the use of numbers to count collections, to balance check-
books, and to measure lengths and volumes. Of course, it is assumed that there
is some connection between the everyday use of numbers to count and measure
and the use of numbers in advanced mathematics, but the exact nature of this
relationship is not often queried.

1.2 Abstractionist Neologicism
There are, however, some notable exceptions to this trend. Perhaps the most promi-
nent is the program of abstractionist neologicism, which began with Wright [1983]
and was extended with Hale [1987]. It continues through many extensions, objec-
tions, and replies to objections (see Hale and Wright [2001]).

The overall plan is to develop branches of established mathematics using ab-
straction principles in the form

(ABS) ∀a∀b (� (a) = � (b) ≡ E (a, b)) ,

where a and b are variables of a given type (typically first-order, ranging over
individual objects, or second-order, ranging over concepts or properties), � is a
higher-order operator, denoting a function from items of the given type to objects
in the range of the variables, and E is an equivalence relation over items of the
given type. Frege ([1884], [1893]) employed three such abstraction principles. One
of them, used for illustration, comes from geometry:

The direction of l1 is identical to the direction of l2 if and only if l1 is parallel
to l2.

A second is the infamous Basic Law V:

(∀F)(∀G)[ExtF = ExtG ≡ ∀x(F x ≡ Gx)],

which, of course, is inconsistent in standard logical systems. A third was dubbed N =

in Wright [1983] and is now called Hume’s Principle:

(HP) (∀F)(∀G)[#F = #G ≡ F ≈ G],

where # is the number of-operator, and F�G is an abbreviation of the second-order
statement that there is a one-to-one relation mapping the F’s onto the G’s. In other
words, HP states that for any concepts F and G, the number of Fs is identical to
the number of Gs if and only if the Fs are equinumerous with the Gs. Georg Cantor
deployed this principle, albeit not formulated as rigorously, to obtain extensive and
profound results concerning infinite cardinals. Our concern here is only with the
familiar natural numbers.

As is now well-known, Frege’s Grundlagen [1884] and Grundgesetze [1893] contain
the essentials of a derivation of the DP axioms from HP. Indeed, in [1893], the only
essential use of the inconsistent Basic Law V is to derive the two conditionals in
Hume’s Principle. The rest of the derivation follows from those two conditionals.1
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This derivation, now called Frege’s Theorem, reveals that Hume’s Principle entails
that there are infinitely many natural numbers. The development of arithmetic from
HP is sometimes called Frege Arithmetic. This theory is taken to be the first success
story of the abstractionist program.

Some of the details matter here. Frege defines zero to be the number of the
concept being non-self-identical:

0 = #[λx (x �= x)].

It follows that zero is the number of any concept that does not apply to anything.
Next comes Frege’s [1884, §76] definition of the successor relation among cardinal
numbers. In modern notation, n is the cardinal-successor of m just in case:

∃F∃G(m = #F&n = #G&∃x(Gx&∀y(Fy ≡ (y �= x&Gy))))

The same definition is employed in Frege’s Grundgesetze §43 and in Wright’s [1983]
book that launched the abstractionist program. Clearly, the idea is that n is a
successor of m just in case: if we have a collection with m members and add a new
member, it will have n members.

Of course, the number one is the successor of zero, two is the successor of one,
etc. A natural number is then defined to be an ancestor of zero under the successor
relation (using Frege’s definition of the ancestral of a relation). The DP Axioms
then follow: zero is a natural number; each natural number has a unique successor;
the successor relation is one-to-one; zero is not the successor of any natural number;
every natural number except zero is the successor of a unique natural number; and
an induction principle holds among the natural numbers: for any property P, if P
holds of zero, and if for any natural number n, if P holds of n, and if P holds of
the successor of n, then P holds of all natural numbers.

Although the search is on to develop more advanced branches of mathematics on
the basis of abstraction principles, our present concern is only with the arithmetic
of the natural numbers. One of the explicit goals of Frege’s logicism is to establish
that arithmetic and real analysis are analytic and, thus, not founded on Kantian
intuition. Wright and Hale adopt a similar goal. Wright [1997, 210] concedes that
HP may not amount to an explicit definition of “cardinal number” or of “identity
of cardinal number”, in some strict sense of definition. Nevertheless,

Frege’s theorem will still ensure . . . that the fundamental laws of arithmetic
can be derived within a system of second-order logic augmented by a principle
whose role is to explain, if not exactly to define, the general notion of identity of
cardinal number, and that this explanation proceeds in terms of a notion which
can be defined in terms of second-order logic. If such an explanatory princi-
ple . . . can be regarded as analytic, then that should suffice . . . to demonstrate
the analyticity of arithmetic.

The rough idea is that HP implicitly defines the notion of a cardinal number by
providing identity conditions for using the number of-operator (#).2 The DP axioms
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are then logical consequences of HP, given the relevant definitions, and are thus
themselves analytic.

1.3 The Frege-Heck Condition
So far we have sketched the manner in which the abstractionist program seeks to
develop established branches of mathematics from abstraction principles, such as
HP. So described, the conditions on successfully executing the program for arith-
metic may appear merely formal: to derive from abstraction principles something
that has the form of the DP axioms.

As Richard Heck [1997] points out, however, this would be a misunderstanding
of the program. In addition to this formal achievement, one must also show that
HP actually characterizes the natural numbers. It is not enough merely to specify
some abstraction principle or other as basic and then derive something that has
the form of the DP axioms. In addition, we need some assurance that this suffices
for the derivation of the very same DP axioms that we all know and some of us
love. In particular, one needs some justification that the results of the abstraction
principle and the definitions have the appropriate contents. That is, the derivations
must be about the natural numbers, not something merely isomorphic to them. As
Heck puts it:

What is required if logicism is to be vindicated is not just that there is some
conceptual truth or other from which what look like axioms for arithmetic follow,
given certain definitions: That would not show that the truths of arithmetic, as
we ordinarily understand them, are analytic, but only that arithmetic can be
interpreted in some analytically true theory. To put the point differently, if we
are so much as to evaluate logicism, we must first uncover the ‘basic laws of
arithmetic’, laws which are not just sufficient to allow us to prove translations
of arithmetical truths, but laws from which arithmetical truths themselves can
be proven. (The distinction is not a mathematical one, but a philosophical one.)
(Heck [1997, 596–97])

Heck provides an illuminating illustration of the point. Frege surely knew that
Euclidean geometry can be interpreted within real analysis: one defines a “point” to
be a pair of real numbers, and then establishes translations of the Euclidean axioms.
Frege held at the time that real analysis, like arithmetic, is analytic, but he did not
hold that geometry is analytic, adopting instead the more traditional Kantian view
that this branch of mathematics is synthetic a priori. So, one can conclude, for the
Fregean to establish that a given theory is analytic (or all but analytic), it does not
suffice merely to interpret the theory within an analytically true theory.

The abstractionists accept this commitment (see, for example, Wright [2000,
323]). They adopt the burden of showing that by starting with HP and then adopting
the above Fregean definitions of zero, successor, and natural number, one has met
what we call the Frege-Heck Condition:

A satisfactory logicist derivation of arithmetic should consist in the derivation
of truths with the appropriate contents – viz. they should be about the natural
numbers as ordinarily understood, and not merely some isomorphic surrogate.
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But how does one discharge this burden? Here is where the abstractionist makes
contact with the everyday notion of number – the one used to count toes and balance
checkbooks. The claim is that by deriving Frege’s Theorem, one has delivered the
very same natural numbers as those used in everyday life. But what are those? Here
is where issues of applicability enter the picture.

1.4 Frege on Applicability
Frege was keenly interested in how mathematical theories are applied, and objected
to other foundational theories on the grounds that they failed to explain empirical
applications in the right kind of way. For our purposes, Frege’s discussion of the
real numbers is especially prescient. Frege took himself to be forging a synthesis
between the old, geometric approaches and the modern, axiomatic approaches
traced to Weierstrass, Dedekind, and Cantor. Discussing his own view, he writes:

. . . we avoid the emerging problems of the [modern] approaches, that either
measurement does not feature at all, or that it features without any internal
connection grounded in the nature of the number itself, but is merely tacked on
externally, from which it follows that we would, strictly speaking, have to state
specifically for each kind of magnitude how it should be measured, and how a
number is thereby obtained. Any general criteria for where the numbers can be
used as measuring numbers and what shape their application will then take, are
here entirely lacking . . .

One may surely expect arithmetic to present the ways in which arithmetic is
applied, even though the application itself is not its subject matter. (Frege [1903,
§159])

Here, “arithmetic” is the theory of the finite cardinal numbers and the theory of
the real numbers. Frege insisted that a proper foundation for real analysis build the
primary applications of the real numbers into the very fabric of the theory. Appli-
cations should not be merely “tacked on externally”, as they are in the celebrated
accounts of Dedekind and Cantor (via what is now known as measurement theory).
Presumably, the same goes for elementary arithmetic.

1.5 Frege’s Constraint
The requirement that the primary empirical applications of a class of numbers be
“built directly into” their characterization has come to be known as Frege’s (Ap-
plication) Constraint, and its endorsement is amongst the more distinctive features
of Hale-Wright abstractionism. They argue that their view satisfies the Frege-Heck
condition because it meets Frege’s Constraint for elementary arithmetic. Moreover,
they argue, their chief rivals do not meet Frege’s Constraint, and for that reason,
deliver, at best, a structure isomorphic to, but distinct from, the naturals.

Crispin Wright [2000, 324] articulates a broad version of the Constraint well:

. . . a satisfactory foundation for a mathematical theory must somehow build its
applications, actual and potential, into its core – into the content it ascribes
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to the statements of the theory – rather than merely ‘patch them on from the
outside’.

With a little more detail:

What is it to observe Frege’s constraint? To insist that the general principle
governing the application of a type of number be built into their characteriza-
tion from the start is in effect just to insist such numbers be characterized by
reference to a principle which explains what kind of entities they apply to – are
of – and what it is for such entities to be associated with the same or different
such numbers . . . To view such principles as philosophically and mathematically
foundational is accordingly to view the applications of the sorts of mathemat-
ical objects they concern as belonging to the essence of objects of those sorts.
(p. 325)

Michael Dummett [1991] also articulates and, it seems, endorses Frege’s Constraint,
with respect to both the natural numbers and the real numbers. This applies even
to the most elementary, or basic, applications.

Any specific type of application will involve empirical, or at least non-logical,
concepts alien to arithmetic; . . . To make such applications intrinsic to the sense
of arithmetical propositions is therefore to import into their content something
foreign to it, . . . What is intrinsic to their sense, however, is the general princi-
ple governing all possible applications. That must accordingly be incorporated
into the definitions of the fundamental arithmetical notions. It is not enough
that they be defined in such a way that the possibility of these applications is
subsequently provable; since their capacity to be applied in these ways is of their
essence, the definitions must be so framed as to display that capacity explicitly.
(Dummett [1991, 60])

Emphasis here is on subsequent provability: because the empirical applications of
arithmetic are essential to the naturals, those applications must be directly reflected
in the principle(s) characterizing those numbers, not subsequently derived from
them.

With a bit of hindsight, perhaps, both Dedekind’s [1872] account of the real
numbers and his later account of the natural numbers [1888] are broadly struc-
turalist (see Shapiro [1997, Chapter 5]). Dedekind shows how the natural numbers
relate to each other, and he shows how the real numbers relate to each other, by
giving a categorical characterization of each structure, the DP axioms in the case
of the natural numbers. Further, Dedekind has no trouble showing how both kinds
of numbers are typically applied. Specifically, as we will see in §3, Dedekind is able
to show how to relate the cardinality of various collections to initial segments of
the natural numbers.

However, for Frege – and, it seems, for Dummett, Wright, and Hale – this
explanation of how the naturals can be applied to collections comes too late. For
the explanation is “tacked on externally”. To quote Dummett again:

The identity of a mathematical object may sometimes be fixed by its relation
to what lies outside the structure to which it belongs; what is constitutive of
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the number 3 is not its position in any progression whatsoever, or even in some
particular progression, nor yet the result of adding 3 to another number, or
of multiplying by 3, but something more fundamental than any of these: the
fact that, if certain objects are counted ‘One, two, three’, or, equally, ‘Nought,
one, two’, then there are 3 of them. The point is so simple that it needs a
sophisticated intellect to overlook it; and it shows Frege to have been right,
as against Dedekind, to have made the use of the natural numbers as finite
cardinals intrinsic to their characterization. (Dummett [1991, 53])

Pace Dedekind, then, Dummett insists that the natural numbers should respect
Frege’s Constraint. Since the empirical application of the natural numbers is in-
trinsic to them, this fact should be directly reflected in their characterization, not
subsequently derived from that characterization.

2. Why Respect Frege’s Constraint for Arithmetic?

We have seen that abstractionists suppose that a satisfactory foundation for arith-
metic must satisfy the Frege-Heck Condition. Further, we have seen that satisfy-
ing Frege’s Constraint is supposed to establish that the abstractionists’ preferred
foundation meets this Condition. Yet this use of Frege’s Constraint is, of course,
predicated on a pair of assumptions:

1. Legitimation: The requirement that a theory of arithmetic should respect
Frege’s Constraint requires justification.

2. Adjudication: It needs to be that the abstractionist program respects Frege’s
Constraint, whereas the alternatives do not.

The role of Legitimation should be obvious, especially since prominent alternatives
to abstractionism – e.g. various versions of structuralism – do not typically endorse
Frege’s Constraint.3 The role of Adjudication is similarly obvious. If abstractionism
fares no better in meeting Frege’s Constraint than the alternatives, then it will not
establish HP as the fundamental foundation for elementary arithmetic.4

With these requirements in mind, our main complaint can be stated as follows:
We know of no good reason to suppose that both Legitimation and Adjudication
are satisfied. Rather, the best extant efforts at Legitimation suffer from one or
both of the following problems: either they fail to justify the adoption of Frege’s
Constraint in any form, or else they render Frege’s Constraint plausible only at the
expense of importing assumptions which render it impossible for abstractionists to
satisfy the Constraint.

In what follows, we start the task of developing this complaint by considering
what we take to be the best arguments for respecting Frege’s Constraint in the
domain of elementary arithmetic – the first due to Hale [2016], the second due to
Wright [2000]. Our primary goal is to identify what they take to be the primary
empirical application of arithmetic, the application that must be “built in”.
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2.1 Hale’s Argument
Hale [2016]’s strategy is to argue that mastery of a certain core application is
essential to the possession of natural number concepts and, hence, that a satisfactory
definition of natural numbers should somehow build this in directly. This core
application is what Benacerraf [1965] calls transitive counting – a kind of procedure
for answering ‘how many’-questions – and stands opposed to what Benacerraf
calls intransitive counting – reciting the numerals in their canonical order (‘one’,
‘two’, etc.). More specifically, transitive counting is the procedure of associating the
members of a finite set of objects with an initial sequence of the numerals starting
with ‘one’, thereby indirectly establishing a correspondence between the members
of the set and an initial segment of the natural numbers.

To [transitively] count the members of a set is to determine the cardinality of a
set. It is to establish that a certain relation C obtains between the set and one
of the numbers – that is, one of the elements of N . . . Practically speaking, and
in simple cases, one determines that a set has k elements by taking (sometimes
metaphorically) its elements one by one as we say the numbers one by one
(starting with 1 and in order of magnitude, the last number we say being k).
To count the members of some k-membered set b is to establish a one-to-one
correspondence between the elements of b and the elements of N less than or
equal to k. (Benacerraf [1965, 274])

Intuitively, if there is a one-to-one correlation between the Fs and a sequence of
numerals 1, . . . , k, then the numeral k answers the question ‘How many Fs are
there?’. In other words, it designates the cardinality of the set in question. For
example, to transitively count five Elmos is to correlate each member of the set of
Elmos with a unique numeral in the series “1, . . . , 5”, thus indirectly establishing a
one-to-one correspondence between the Elmos and the first five natural numbers.

With this distinction between transitive and intransitive counting in place, Hale’s
argument proceeds via three claims:

P1: One who has learned to count both intransitively and transitively, but not
yet to add, multiply, etc., has at least a basic grasp of the concepts of the natural
numbers.

P2: It is possible that a trainee – which we’ll call the DP Novice– should learn
to count intransitively, but not transitively, and then proceed directly to learn
to do arithmetic. In particular, she might digest the DP axioms, and thus “be
introduced to the successor operation . . . and be taught to add, multiply, etc.,
perhaps by being given the usual recursive definitions of + and x, or perhaps
by means of tables”.

P3: The DP-Novice would not yet have a basic grasp of (the concepts of) the
natural numbers.

Hale maintains that each of these claims is individually plausible, and that collec-
tively they invite the conclusion that:

C1: “The possession of the concepts of natural numbers requires understanding
their use in transitive counting.”
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Further, Hale claims that if this is so, then “the fact that the natural numbers can
be used to count collections of things is no mere accidental feature, but is essential
to them” (Hale [2016, p. 340]). Roughly, it is a conceptual necessity that they can
be so used. Hence:

C2: “A satisfactory definition of the natural numbers – a characterisation of
what they essentially are – should reflect or incorporate that fact.”

In sum, the argument is that a satisfactory characterization of the natural numbers
should build their essential empirical application – transitive counting – into that
characterization. And this is, of course, precisely what Frege’s Constraint requires
for arithmetic, assuming the essential application is transitive counting.

Although Hale’s argument is a prima facie compelling one, we have argued at
length elsewhere5 that it fails Legitimation, for at least two reasons. Very briefly:

a) The inference from C1 to C2 is problematic because it is not generally the case
that what’s essential to the possession of a concept of X’s is also essential to
X’s themselves.6

b) We find P3 far from obvious, and therefore in need of further defense.7

However, we will not dwell on the issue of Legitimation here. For present purposes,
the key point is that Hale’s argument would, if sound, be an argument for a version
of Frege’s Constraint that makes transitive counting the core application. As we will
see, this means that it delivers a version of Frege’s Constraint that fails Adjudication.

2.3 Wright’s Argument
We now turn to Wright’s [2000] argument for Frege’s Constraint. Our primary goal
is to show that Wright, too, is committed to transitive counting being at least one
core application that must be built directly in to any philosophically satisfactory
account of the natural numbers.

Recall Wright’s initial gloss of the Constraint:

To insist that the general principle governing the application of a type of number
be built into their characterization from the start is in effect just to insist such
numbers be characterized by reference to a principle which explains what kind
of entities they apply to – are of – and what it is for such entities to be associated
with the same or different such numbers . . . (p. 325)

Clearly, this requirement needs Legitimation, if it is to play a substantive role
in justifying a foundation for arithmetic. The alternative would be tantamount
to the contentious and unsupported insistence that Frege’s Constraint must be
respected. Still worse, the version of the Constraint that Wright articulates is one
that, conveniently, demands precisely what HP delivers: a principle that specifies
the sorts of things to which numbers apply, and when such numbers are the same
or distinct.

Of course, Wright is fully aware of this, and consequently seeks to argue for
Frege’s Constraint. Although the general contours of his argument are discernable,
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it is far from obvious – at least to us – how best to render the details. We proceed as
follows: In 2.3.1, we outline Wright’s general argumentative strategy. Then in 2.3.2
we present a plausible, and more precise reconstruction of his argument.

2.3.1 Wright’s Argumentative Strategy
As Wright sees it, the primary resistance to Frege’s Constraint comes from struc-
turalists who typically decline to respect it. Thus, Wright’s argument for Frege’s
Constraint is also represented as an argument against structuralism. The argument
is broadly transcendental in character. He maintains that unless elementary arith-
metic satisfied Frege’s Constraint, a kind of a priori arithmetic knowledge – which
he presumes we possess – would be impossible:

It seems clear that one kind of epistemic access to . . . simple truths of arithmetic
proceeds precisely through their applications. Someone can – and our children
surely typically do – first learn the concepts of elementary arithmetic by a
grounding in their simple empirical applications and then, on the basis of the
understanding thereby acquired, advance to an a priori recognition of simple
arithmetic truths. (Wright [2000, 327]).

Consider “a child who reasons on her fingers . . . that 4 + 3 = 7”. According to
Wright, such a process involves a kind of reflection upon the application of arith-
metic concepts, the result of which is the possession of basic arithmetic knowledge,
e.g. that 4 + 3 = 7. This knowledge is not merely empirical knowledge of impure
mathematical truths.8 Rather, his contention is that the child can, via reflection on
schematic applications, acquire a priori knowledge of pure arithmetic truths, and so
“there is a kind of a priori arithmetical knowledge which flows from an antecedent
understanding of the way that arithmetical concepts are applied”.

According to Wright, despite its reliance on empirical applications, this kind
of knowledge is a priori because the role that applications play in the child’s
reflections – when they use their fingers, a diagram, or a collection of blocks,
for example – is strongly analogous to that played by paper and pencil construc-
tions in geometry. But, despite its reliance of constructions, since the geometer’s
knowledge is a priori, according to Wright, we should adopt much the same view
of the child’s arithmetic knowledge, despite its reliance on empirical applications.

Why deny that structuralism – a view which does not respect Frege’s Constraint –
can accommodate the above sort of a priori knowledge? Crudely put, Wright’s
contention is that structuralists draw an insufficiently tight connection between the
content of pure arithmetic propositions and their applications. More precisely, if
structuralism were correct, then the content of what one knows when grasping
simple arithmetic truths would have nothing as such to do with their applications
to collections of things, but rather with abstract structures and their relations. In
that case, coming to know a priori that 4 + 3 = 7 would require more than “mere
reflection” upon the application of arithmetic concepts to schematic applications.
Specifically, it would require additionally recognizing structural affinities between
the collections under consideration and the natural numbers:
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. . . the structuralist reconstruction of this knowledge will involve a representa-
tion of its content from which an appreciation of potential application will be
an additional step, depending upon an awareness of certain structural affinities.

According to Wright, this reconstruction is problematic because it would be tanta-
mount to “changing the subject”:

[W]hatever the details of her epistemological story about the simplest truths of
arithmetic, the content of the knowledge thereby explained will not be that of
the knowledge we actually have.

For that knowledge—the knowledge we actually have—does not “depend upon an
additional appreciation of structural affinities.” Rather it is merely “grounded in
reflection upon sample, or schematic applications.” As a consequence, to account
for the possibility of such knowledge, it must be that:

. . . [S]imple arithmetic knowledge, so acquired, has to have a content in which
the potential for application is absolutely on the surface, since the knowledge is
induced precisely upon sample, or schematic applications.9

So if one assumes that an adequate definition of natural number should satisfy the
Frege-Heck condition, then such definitions will need to respect Frege’s Constraint.

2.3.2 A Reconstruction
While it is not entirely clear how exactly to render the details of Wright’s argument,
Hale [2016] provides a reconstruction, which we present below in a minimally
modified form so as to more faithfully capture Wright’s original intentions:

P1. We can acquire a priori knowledge of simple arithmetic truths by mere
reflection on the application of the concepts involved in stating those truths.

P2. If we can acquire a priori knowledge of simple arithmetic truths by mere
reflection, then a connection with application is built into the content of those
simple arithmetic truths.

P3. If structuralism about arithmetic is right, no such connection with applica-
tion is part of the content of arithmetic truths.

Hence [from P2 and P3]:

C1. If structuralism about arithmetic is right, we cannot acquire a priori knowl-
edge of simple arithmetic truths by mere reflection.

Hence [from P1 and C1]:

C2. Structuralism about arithmetic is wrong. (Hale [2016], 334])

Wright’s complaint against structuralism is that by additionally requiring the recog-
nition of structural affinities, structuralism fails to account for the immediacy of
such a priori arithmetic knowledge. This is what we mean by mere reflection in
P1: by stipulation, one who gains arithmetic knowledge by mere reflection does
so without having to engage in the further step of recognizing structural affinities



Neologicism, Frege’s Constraint, and the Frege-Heck Condition 13

between the objects figuring in schematic applications and the natural numbers
themselves. According to Wright, no such step is required since the contents of
simple arithmetic truths are such that the “potential for application is absolutely
on the surface”. Thus, Wright concludes, the content that structuralists attribute to
simple arithmetic statements is not the content of our actual arithmetic knowledge.
Hence, structuralism violates the Frege-Heck Condition precisely because it fails to
respect Frege’s Constraint.

2.3.3 Transitive Counting Again
Although Wright’s argument is an intriguing one, we find it less than convincing.
Specifically, we see no reason to suppose that P1 is true. Certainly, Wright has
nothing compelling to say on the matter. Sometimes he appears to treat the claim
as if it were just obvious. Thus he says:

It seems clear that one kind of access to . . . simple truths of arithmetic precisely
proceeds through their applications.

But if the relevant sort of access is of the merely reflective variety – and so requires
no recognition of structural affinities – then it does not seem at all clear that humans
have such access to arithmetic truths. Not to us, at any rate.

In other places, Wright appears to think that it is possible to acquire a priori
arithmetic knowledge via mere reflection on applications because children actually
acquire such knowledge in this way. Recall Wright’s comment:

Someone can—and our children surely typically do—first learn the concepts of
elementary arithmetic . . . and then, on the basis of the understanding thereby
acquired, advance to an a priori recognition of simple arithmetical truths.

Yet it is far from obvious that children do this – especially not if the process is
supposed to involve no recognition of structural affinities. Certainly, the extensive
developmental literature on mathematical cognition fails to suggest anything of the
sort. In fact, some highly influential accounts of how number cognition develops
make the recognition of structural affinities a crucial step in the process.10

In any case, we propose not to dwell on the soundness of Wright’s argument
here. For present purposes, the main point we wish to highlight is that, as with
Hale’s argument, Wright’s argument would, if sound, support a version of Frege’s
Constraint that makes transitive counting the core application. First, this is how
Hale interprets Wright (Hale, 2016, p. 333). Secondly, recall that the sort of a priori
arithmetic knowledge acquired via mere reflection by “a child who reasons on her
fingers” is supposed to be similar to the sort of geometric knowledge acquired via
the construction of diagrams. But clearly “reasoning on one’s fingers” just is a form
of transitive counting. Third, Wright himself suggests as much when discussing the
shortcomings of structuralism:

This suggests a distinction which, wherever it can be upheld, will mandate
something close to Frege’s Constraint. It is one thing to explain how (a priori)
knowledge could be acquired of a system which, taken in conjunction with
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certain supplementary reflections, can then be applied in the same ways as an
entrenched mathematical theory. But that will not suffice to provide a correct (if
idealized) reconstruction of the content of what we actually know in knowing that
theory if at least some of that knowledge can be achieved just by the reflective
exercise of concepts acquired and applied in the ordinary course of counting
and calculation . . . (Wright [2000, 328], emphasis in original)

Here, Wright explicitly connects the content of our actual arithmetic knowledge ob-
tained via mere reflection on the concepts acquired and exercised through counting.
Again, since this takes the form of “reasoning on one’s fingers”, at least some of our
actual arithmetic knowledge comes via mere reflection on the concepts acquired
and exercised through transitive counting.

3. Frege’s Constraint and the Parity Problem

Let’s summarize the discussion so far. In the domain of arithmetic, Frege’s Con-
straint is intended by neologicists to Adjudicate: to show that their preferred foun-
dation – HP – meets the Frege-Heck Condition, whereas the main potential alter-
natives, especially the DP axioms, do not. For Frege’s Constraint to play this role, it
requires Legitimation: one must justify the assumption that a theory of arithmetic
should respect Frege’s Constraint. Finally, the two best arguments for respecting
Frege’s Constraint for arithmetic, if sound, would legitimate a version of Frege’s
Constraint on which the core empirical application is transitive counting. Call this
version of the Constraint, FCtc.

This sets the stage for our primary objection to neologicist efforts to meet the
Frege-Heck Condition by invoking Frege’s Constraint:

The Parity Problem: If transitive counting is the relevant application, then
Frege’s Constraint fails Adjudication. Specifically, it will not be the case that
HP respects FCtc whereas the DP Axioms do not. Nor, for that matter, will it
be the case that the DP axioms respect FCtc where HP does not. When it comes
to transitive counting, the two are on a par.

Suppose that transitive counting is the primary empirical application relevant to
satisfying Frege’s Constraint. Then the principles characterizing the natural num-
bers ought to “directly reflect or incorporate” – or “build in” – that they can be used
this way. But what exactly would it mean to build in transitive counting directly?
The requirement cannot be that the transitive counting procedure, itself, be built in
since such a procedure is not truth apt or propositional, as axioms generally are.
Moreover, it is quite clear that neither HP nor the DP axioms specify a procedure
of this sort. In which case, on the present construal, FCtc would obviously fail to
Adjudicate.

A more plausible construal of FCtc, and the one we explore here, is that a for-
mal characterization “builds in” transitive counting if it specifies the cognitive or
epistemic prerequisites relevant to performing the transitive counting procedure.11

Moreover, to echo Wright (and Frege and Dummett), these specifications must be
“absolutely on the surface”, not “tacked on externally”. In other words, they must
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not be derived from the DP Axioms or HP; they must be part of the characteriza-
tions themselves. Our claim is that neither the DP Axioms nor HP satisfies FCtc

under this construal.

3.1 Nominal and Numerical Transitive Counting
In order to argue for this claim, we first need to distinguish between two locally be-
haviorally indistinguishable kinds of transitive counting, which we call nominal and
numerical transitive counting. Both involve using numerals to answer ‘how many’-
questions.12 Moreover, both involve the deployment of a procedure characterized
by the following routine:

TC Routine

If asked “How many Fs are there?”
i. Isolate the Fs from the non-Fs.
ii. Establish a bijection between the Fs and an initial segment of the

numerals in the count list <‘n1’ . . . ‘nn’ > by reciting (possibly
non-verbally) the numerals in order, starting with ‘n1’ and
correlating each F with a unique numeral in the list.

iii. If ‘nk’ is the final numeral resulting from (ii), then answer “There
are nk Fs”.

In both cases, a condition on successful counting is that the kth numeral delivered
in step-iii correctly answers the original ‘how-many’-question.

Yet there are important differences between the two sorts of counting regard-
ing the extent to which the counter has mastery of numerical concepts. Though
we elaborate below, to a first approximation, the idea is that numerical transitive
counting requires that one grasp cardinality concepts when following the TC Rou-
tine. Roughly equivalently, the counter must (tacitly) grasp that the numerals they
deploy designate cardinalities.

By contrast, nominal transitive counters need not grasp cardinal concepts when
deploying numerals in the TC Routine. Of course, the numerals they use may express
our concepts of natural number, or denote natural numbers in the public language.
But the nominal counter needn’t grasp this. It suffices that they memorize and
follow the TC Routine in a brute mechanical way, as it were, with no appreciation
that their numerals designate cardinalities, or that their response designates the
cardinality of the collection being counted.

We may now ask whether – and if so in what respects – the neologicist’s pre-
ferred foundation provides the cognitive or epistemic prerequisites for either kind of
transitive counting, where the DP axioms do not. We begin with nominal counting.

3.1.2.1 Prerequisites for nominal transitive counting
One obvious prerequisite for nominal transitive counting is the capacity to intran-
sitively count – the numerals in their canonical order. This is required by step-ii
of the TC Routine – correlating each F with a unique, recited numeral. But what
representational resources are required to count intransitively?
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First, one needs access to numerals. Consider again the DP Novice. Because she
has access to the DP Axioms and second-order logic, she can generate a potentially
infinite list of numerals. She has a name for the first numeral, and can generate
subsequent numerals via the successor axiom, and so is able to generate what we’ll
call DP numerals:

< s (o) , s (s (o)) , . . . >

What about HP? Consider another fictional character, the HP Novice, who grasps
HP and second-order logic. Accordingly, he has the resources to form what we call
HP numerals:13

< #[λy.y = #[λx.¬x = x] ], #[ λz.z = #[λy.y = #[λx.¬x = x]] ∨ z = #[λx.¬x

= x]]], . . . >

The first HP numeral refers to the number of the concept being the number of non-
self-identical objects, i.e. the cardinal number one, the second refers to the concept
being the number of the concept being either the number of the number of non-self-
identical concepts or the number of self-identical concepts, i.e. the cardinal number
two, etc. Thus, the HP Novice’s access to second-order logic provides one important
precondition for intransitive counting.

More than just access to numerals is required, however. One must also reliably
deploy those numerals in their appropriate order. Following Gelman and Gallistel
(1978), this is sometimes referred to as the Stable Ordering Principle:

(SOP) The numerals employed in counting must occur in a stable, and thus
repeatable, order.

Minimally, this requires that the count sequence contains a fixed first element,
followed by a fixed sequence of successive elements. The DP Axioms provide just
that, of course: the axiom for zero provides a stable first element, while the axioms
characterizing successor provide a sequence of stable successive elements. Not so
with HP, however. Though the HP Novice can form HP numerals, HP and second-
order logic alone do not guarantee the ordering provided. Thus, while the DP
Novice plausibly grasps SOP, the HP Novice does not. Further, since SOP is a
necessary condition for intransitive counting, it follows that the HP Novice is
unable to nominally transitively count.

3.1.1.2 Adjudicating via Nominal Transitive Counting?
Suppose we frame the question differently: Given an ability to intransitively count,
does FCtc Adjudicate in favor of HP over the DP Axioms? By stipulation, someone
is a nominal transitive counter only if they can perform the TC Routine correctly
without grasping that the numerals used in this procedure designate cardinalities.
So, the question is: Once provided with the ability to intransitively count, is the HP
Novice thereby able to correctly perform the TC Routine whereas the DP Novice
is not? The answer, we submit, is “No”.
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To be a nominal transitive counter one must be able to perform steps i-iii of the
TC Routine. Consider each in turn:

Step-i: This consists in isolating the Fs from the non-Fs. Here we think neither
the HP Novice nor DP Novice will be able to perform this task merely by virtue
of their grasping second order logic along with HP or the DP axioms. This is
hardly surprising, as step-i just is categorization – a capacity that is plausibly a
precondition, not merely for counting, but almost all cognition. It would be truly
remarkable, then, if a foundation for arithmetic provided this prerequisite.

Step-ii: Unlike step-i, this is specific to transitive counting. Assuming both
Novices can intransitively count, both can plausibly perform step-ii. After all, both
can establish one-to-one correspondences between their numerals and collections
of objects, thanks to their access to second-order logic. The only difference will be
the kinds of numerals involved.

Step-iii: Assuming nominal transitive counting, step-iii is equivalent to what
psychologists call the Last Word Rule [Fuson, 1988]:

(LWR) The last numeral used in the transitive counting procedure answers the
relevant ‘how many’-question posed when performing that procedure.

Plausibly, neither Novice grasps LWR. For even assuming they can perform step-ii,
it is an extra item of procedural knowledge – or know how – that they should
respond with the final numeral recited in step-ii, as opposed to any other numeral,
or no numeral at all.14

In sum, neither the DP axioms nor HP provide the cognitive prerequisites for
nominal transitive counting, though the DP axioms perform slightly better thanks
to satisfying SOP. Hence, FCtc won’t Adjudicate in favor of HP if nominal transitive
counting is the relevant capacity.

3.1.2.1 Prerequisites for numerical transitive counting
This leads to another possible characterization of FCtc: Given mastery of the TC
Routine, HP provides the prerequisites for numerical transitive counting, whereas
alternatives, especially the DP axioms, do not. Put differently, given the TC Routine,
whereas the HP Novice can numerically transitively count, the DP Novice cannot.

Recall that numerical transitive counting requires reliably answering ‘how-many’-
questions via the TC Routine while grasping that the numerals deployed designate
the cardinality of the collection being counted. Now, an important difference be-
tween numerical and nominal transitive counting concerns step-iii of the TC Rou-
tine. In the case of nominal counting, this step is equivalent to LWR, whose grasp
does not imply recognition of cardinality. In contrast, numerical transitive counting
requires formulating step-iii as involving a grasp of what, following Gelman and
Gallistel (1978), is known as the Cardinal Principle:

(CP) The last numeral used in the TC Routine designates the cardinality of
the collection being counted.
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Grasping CP requires (tacit) recognition that the terminal numeral deployed in the
TC Routine designates a cardinality, or numerosity. As Thompson [2010] explains:

To be considered to have grasped [CP], a child needs to appreciate that the final
number name is different from the earlier ones in that it not only ‘names’ the
final object, signaling the end of the count, but also tells you how many objects
have been counted: it indicates what we call the numerosity of the collection.

For example, if the last numeral used in the count is ‘10’, then the counter must
(tacitly) recognize that the cardinality of the collection is ten.

This also has ramifications for how we should characterize step-ii of the TC
Routine. In particular, since the numerical transitive counter grasps CP and can
reliably count collections with different cardinalities, they must also grasp that each
successive numeral in the count routine designates a different cardinality. To see
this, first note that in order to be a reliable numerical transitive counter, one needs
to (tacitly) recognize that, had the terminal numeral been any of those prior to ‘nk’,
the cardinality of the collection would have been different. Start with a collection of
ten objects. Had the last numeral used been ‘9’, the counter would need to (tacitly)
recognize that the cardinality of the collection would not have been ten. But, by
parity of reasoning, the same will be true of any numeral prior to ‘9’ as well. In
short, reliable numerical transitive counting appears to require a grasp of something
like successor.15,16

Two further points are worth emphasizing. First, this notion of successor needs
to tie the numerals deployed in the TC Routine to cardinalities. Thus, we distinguish
two kinds of successor. The first, defined by the DP axioms, is what we call structural
successor. As we have seen, this notion suffices to generate stably ordered numerals.
However, like the rest of the DP axioms, it fails to link numerals to cardinalities.
The second notion is cardinal successor, as defined by Frege (1884, 1893), given in
§1.2 above. Unlike structural successor, cardinal successor directly links concepts
to their cardinalities. Thus, it represents a plausible candidate for tying the result
of performing the transitive counting procedure to the cardinality of the collection
being counted.

Secondly, cardinal successor will not establish a link between transitive counting
and cardinalities unless an appropriate interpretation of the initial numeral in the
count sequence is provided. Otherwise, nothing prevents the counter from enumer-
ating the first object counted as e.g. 17 rather than 1, thus generating the wrong
answer. Hence, reliable numerical counting requires grasping that the first numeral
in the count list designates the cardinal number one.

With the above considerations in place, we are now in a position to supplement
CP by two further conditions on numerical transitive counting:

(NTC1) The counter must (tacitly) recognize that the first numeral in the count
list designates the cardinal number one.

(NTC2) The counter must (tacitly) recognize that each numeral in the count list
following the first designates a cardinal number which is the cardinal successor
of some cardinal number designated by a prior numeral.
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NTC1 and NTC2 jointly guarantee that the final numeral reached in performing
the TC Routine designates the actual cardinality of the collection being counted.
Hence, together with CP, these principles plausibly characterize the cognitive or
epistemic prerequisites for genuine numerical transitive counting.

3.1.2.2 Adjudication via Numerical Transitive Counting?
Let’s now return to the issue of Adjudication. It is at least arguable that the DP
Novice has some generic notion of number, namely a notion of structural number, as
defined by the DP axioms. This is adequate for doing basic calculations and proving
theorems about these numbers. Moreover, she possesses an accompanying notion of
structural successor. Still, because she clearly lacks notions of cardinal number and
cardinal successor, she fails all our conditions on numerical counting, NTC1, NTC2,
and CP. This reveals that the DP Axioms alone fail to provide the prerequisites for
numerical transitive counting, assuming further deduction is not allowed.

But is the HP Novice any better off? Clearly, he does possess a notion of cardinal
number – or number of – thanks to his knowledge of HP. What’s more, we are pre-
pared to concede that he satisfies NTC1 – he can see that the first HP numeral refers
to a singleton concept, and so can infer via HP that all one-membered classes are
numbered by it. However, because he does not yet have a notion of cardinal succes-
sor, he does not satisfy NTC2. Consider the second HP numeral and a class of two
objects, say the moons belonging to Mars. In order to infer from HP that the number
of Martian moons is the number referenced by the second HP numeral, he needs to
make an additional inference, given the numeral’s disjunctive character. Specifically,
he needs to infer that the number of the concept being the number of the concept
being non-self-identical and the number of the concept being non-self-identical are
distinct. Yet this is not something he can know from HP and second-order logic
alone, at least not without further deduction. The point generalizes to all HP nu-
merals beyond the first, thus revealing that access to HP and second-order logic
alone fails to provide the cognitive prerequisites for numerical transitive counting.

Finally, the previous point implies that the HP Novice lacks the prerequisites for
grasping CP. To satisfy CP, the counter must recognize that the last numeral used in
the transitive counting procedure designates the cardinality of the collection being
counted. Again, this requires recognizing that the last numeral recited in the TC
Routine designates a cardinality distinct from those designated by prior numerals
in the count list. And this, of course, requires grasping the notion of cardinal
successor, which the HP Novice does not have.

In sum, neither Novice has the cognitive prerequisites for numerical transitive
counting. Thus, neither HP nor the DP axioms will satisfy Frege’s Constraint if
numerical transitive counting is the application relevant to its satisfaction. In other
words, FCtc will not adjudicate between these as the uniquely correct foundation
for arithmetic.

3.2 Recovering Numerical Transitive Counting: Parallel Predicaments
If neither Novice possesses the resources necessary for numerical transitive count-
ing, then what additional resources would each Novice need? What else needs to



20 NOÛS

be added to each set of characterizing principles to satisfy FCtc? Although the HP
Novice plausibly recognizes that his first numeral designates the cardinal number
one, what he needs, of course, is cardinal successor. With this in hand, following
Frege, he could go on to prove the existence of zero, that the successor relation
is one-to-one on the finite cardinal numbers, and the induction principle. That is,
he could establish the DP axioms for cardinal number and successor à la Frege’s
Theorem. This would provide him with a list of numerals appropriate for numerical
transitive counting, generated in a way similar to the DP numerals discussed above.

On the other hand, the DP Novice is missing a general notion of cardinal
number. Though she can generate numerals and correlate collections, she does not
yet know that if a one-to-one correspondence exists between a collection of Fs and
the numerals ‘n1’, . . . , ‘nk’, then the terminal numeral designates the cardinality of
the Fs. This would be remedied if, following Dedekind (1888), she had access to
what we call Dedekind’s Theorem.

161. Definition. If � is a finite system, then by (160) there exists one and by
(120), (33) only one single number n to which a system Zn similar to the system �

corresponds; this number n is called the number [Anzahl] of elements contained
in � (or also the degree of the system �) and we say � consists of or is a system
of n elements, or the number n shows how many elements are contained in �.
If the numbers are used to express accurately this determinate property of finite
systems they are called cardinal numbers.

In contemporary terms, “finite system” translates as “Dedekind finite set”, and
“similar” as “equinumerous”. In effect, Dedekind’s Theorem combines previous
results—results obtained from the DP axioms, suitable definitions, and second-
order logic—to establish the sorts of one-to-one correspondences characteristic of
transitive counting, and then defines “cardinal number of the Fs” as the terminal
number resulting from performing the TC Routine on some finite collection of
Fs. With Dedekind’s Theorem, the DP Novice is knowingly able to answer ‘how
many’-questions by using DP numerals which designate cardinalities.

In sum, with additional resources at hand, both Novices would be able to numer-
ically transitively count. The problem, however, is that these additional resources
come too late in the explanation, by neologicist lights. They are “tacked on exter-
nally” to quote Frege [1903]. They are not “absolutely on the surface” to quote
Wright [2000]. More specifically, the problem is that they are derived from the
characterizing principles, as the passage from Dummett [1991, p. 60], cited in §1.5,
makes clear. Again, according to Dummett, because the empirical applications of
arithmetic are essential to the naturals, those applications must be directly reflected
in the principle(s) characterizing those numbers, not subsequently derived from
them. Yet what our two Novices reveal is that the cognitive or epistemic prerequi-
sites required for transitive counting are available only if subsequent derivation is
allowed.

We conclude that even on a construal of Frege’s Constraint which permits deriva-
tion, HP and the DP axioms are in exactly parallel predicaments. Neither Novice
has the resources immediately available for numerical counting, but both would be
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in the position to do so with some additional resources.17 In both cases, what’s
needed are some further definitions and theorems showing that the definitions are
adequate to their purpose. The DP Novice has a notion of structural number ade-
quate for doing number theory. What she lacks is a notion of cardinal number, as
provided by Dedekind’s Theorem.

In contrast, the HP Novice has a notion of cardinal number, as provided by
HP. What’s missing is an understanding that HP numerals (and the cardinals that
they designate) have a structure that is suitable for transitive counting, namely that
there is a first such number, that each cardinal number has a successor obtained by
adding exactly one object to the previous collection, and that cardinal successor is
one-to-one. In short, what is missing is the bulk of Frege’s Theorem.

Finally, in both cases, the resources needed to make the transition are remarkably
similar. Both Novices would invoke basic facts about one-to-one correspondences,
derived via the usual definitions in second-order logic (or elementary set theory).
So the two accounts are, from this perspective, on a par.
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Notes
1 See Heck [2011] for details.
2 The exact status of HP – especially its epistemic status – is a point of some debate. For present

purposes, however, we need not concern ourselves with such matters.
3 Nor, for that matter, does the development of mathematics itself, with its relentless drive for ab-

straction, and disconnection from intuitive applications. Frege’s main opponents, Weierstrass, Dedekind,
and Cantor, all contributed to an emerging trend of divorcing mathematics from Kantian intuition of
space and time and, indeed, from any and all applications (see Coffa [1991]). The culmination of this
trend was Hilbert’s Grundlagen der Geometrie [1899]. Of course, Hilbert was aware that spatial intuition
or suitably idealized observation – typical applications – remains the source of the axioms of geom-
etry. In his mathematical writing, however, the role of intuition is carefully and rigorously limited to
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motivation and heuristic. Once the axioms have been formulated, intuition is banished. From the per-
spective of the mathematician, anything at all can play the role of the undefined primitives of points,
lines, planes, etc., so long as the axioms are satisfied. Otto Blumenthal reports that in a discussion in a
Berlin train station in 1891, Hilbert said that in a proper axiomatization of geometry, “one must always
be able to say, instead of ‘points, straight lines, and planes’, ‘tables, chairs, and beer mugs’” (see “Lebens-
geschichte” in Hilbert [1935, 388-429]; the story is related on p. 403). Presumably, the same goes for
number theory. There are, of course, important questions concerning which mathematical theory is best
applied to this or that part of material (or non-material) reality. What, for example, is the structure of
physical space? But, for Hilbert, these applications are, and should be, “tacked on externally”. Arguably,
this orientation has dominated mathematics ever since.

4 There is a parallel issue concerning the proper interpretation of Frege’s own use of Frege’s Con-
straint when it comes to real analysis. We need a reading which (i) is reasonably plausible as a condition
to impose on an account of the real numbers and (ii) is not met by the celebrated accounts of Cantor
and Dedekind. We cannot find such a reading.

5 See Samuels, Shapiro, and Snyder [ms.].
6 To illustrate, although it could be essential to possessing the concept of water that we can recognize

water, there is no reason to suppose that it is essential to water, as such, that it can be so recognized.
7 For example, is it really that obvious that someone who could prove complex results in number

theory would lack natural number concepts merely because they cannot count transitively?
8 For example, it is not knowledge of the empirical regularity that when one takes three things and

adds four more things, one gets seven things (at least for a short period of time).
9 ibid, emphasis added.
10 See, for example, Carey [2009], especially Chapter 8.
11 There is another possible construal of “building in transitive counting” on which a foundation for

arithmetic builds in transitive counting when it specifies the conditions under which successful transitive
counting occurs. However, since this success conditions reading has the very same problems as the
present view, we relegate our discussion of it to footnotes.

12 Although we tend to talk as if numerals are elements of a symbol system, such Arabic notion,
other things – such as, natural language expressions, manual signs, or even body parts – would suffice.

13 Many thanks to Neil Tennant here.
14 In fact, during the process of learning to transitively count, children appear to go through a

period when they perform step-ii, yet fail to recognize that ‘nk’ is the appropriate answer to the initial
‘how many’-question.

15 Incidentally, this is a point recognized by Sarnecka and Carey [2008], who note that “...knowing
the cardinal principle means having some implicit knowledge of the successor function – some under-
standing that the cardinality for each numeral is generated by adding one to the cardinality for the
previous numeral.”

16 Strictly speaking, the present argument does not show that any numerical counter requires the
notion of successor. In particular, if a creature has only a finite set of numerals – say, ‘1, 2 . . . 10’ – then
the argument only requires that they grasp the analog of successor up to the limit imposed by their
count list. However, since both Novices can be given numerals for all finite positive integers, for them
grasping CP requires grasping successor.

17 An anonymous referee queries whether all of Frege’s Theorem is needed for the HP Novice to
transitively count, or whether Hume’s Principle along with certain additional facts like the number of Fs
is 3 would suffice. Admittedly, the HP Novice can answer some “how many” questions if she is supplied
with names for particular cardinal numbers. Suppose, for example, that we tell the HP Novice that zero
is the number of the concepts of being non-self-identical, that one is the number of the concept of being
identical to zero (following Frege so far), that two is the number of the concept of either being identical
to zero or identical to one, and that five is the number of fingers on her left hand. Then she can answer
‘How many?’-questions, provided that the answer is among the set {zero, one, two, five}. She can say,
for example, how many fingers are on her right hand and that two is the number of parents she has. But
this is a rather thin range of application. Someone who has grasped transitive counting can, in principle,
answer ‘how many’-questions for any finite collection (or at least any collection up to the limit of her
count sequence).
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The same referee asks if there is a way to compare the strength of the additional resources that
the HP Novice and the DP Novice need to transitively count. In effect, the question concerns the
resources needed to prove Frege’s Theorem and what we call “Dedekind’s Theorem”. Technically,
the questions are subtle, and most interesting. Frege’s Theorem has been well-studied in this regard.
The upshot is that to derive the Dedekind-Peano axioms from Hume’s Principle, one needs at least
some impredicative comprehension, something in the neighborhood of �1

1-comprehension, plus some
impredicativity in Hume’s Principle itself. And the particular impredicativity assumed in the logic will
affect the impredicativity of induction in the resulting arithmetic. See, for example, Burgess [2005] or
Heck [2011]. There is no similar study of Dedekind’s theorem; Dedekind himself does not impose any
restrictions on induction, but the sources and targets in both cases are similar. We will not speculate
on the relevance of these results for the philosophical programs. Suppose, for example, that Frege’s
Theorem requires slightly less impredicativity than Dedekind’s Theorem. Would that give an advantage
to abstractionism over structuralism?

Finally, the referee suggests the following possibility: instead of transitive counting, perhaps the
application relevant to satisfying Frege’s Constraint is cardinality comparison. After all, there is a sense
in which the HP Novice can compare cardinalities in a way that the DP Novice cannot: given any two
sets, only the HP Novice can tell whether or not they have the same number. Thus, abstractionism may
have an advantage after all.

Note first that ‘cardinality comparison’ is ambiguous: it could connote sameness and difference in
cardinality, or it could connote having a greater or lesser cardinality. While the HP Novice can compare
cardinalities in the first sense, neither Novice can compare cardinalities in the second. For example, if
there are two Elmos and three Grovers, neither Novice knows that that there are more Grovers than
Elmos. Insofar as it may seem independently plausible that grasping natural number concepts requires
an ability to compare cardinalities, we surmise that it would be so in virtue of this second, richer sense.
On the other hand, there is no evident reason for thinking that ‘cardinality comparison’ in the first,
rather thin sense is the primary application of the naturals. Moreover, the stronger, relevant principle for
cardinality comparison is not an abstraction principle.
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